首页 > 房产
2016家具电商数据
电商数据分析需要统计哪些指标
展开全部数据指标 1.电商总体运营指标 数据指标 电商总体运营整体指标主要面向的人群电商运营的高层,通过总体运营指标评估电商运营的整体效果。
电商总体运营整体指标包括四方面的指标: (1)流量类指标 独立访客数(UV),指访问电商网站的不重复用户数。
对于PC网站,统计系统会在每个访问网站的用户浏览器上“种”一个cookie来标记这个用户,这样每当被标记cookie的用户访问网站时,统计系统都会识别到此用户。
在一定统计周期内如(一天)统计系统会利用消重技术,对同一cookie在一天内多次访问网站的用户仅记录为一个用户。
而在移动终端区分独立用户的方式则是按独立设备计算独立用户。
页面访问数(PV),即页面浏览量,用户每一次对电商网站或着移动电商应用中的每个网页访问均被记录一次,用户对同一页面的多次访问,访问量累计。
人均页面访问数,即页面访问数(PV)/独立访客数,该指标反映的是网站访问粘性。
(2)订单产生效率指标 总订单数量,即访客完成网上下单的订单数之和。
访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比。
(3)总体销售业绩指标 网站成交额(GMV),电商成交金额,即只要网民下单,生成订单号,便可以计算在GMV里面。
销售金额。
销售金额是货品出售的金额总额。
注:无论这个订单最终是否成交,有些订单下单未付款或取消,都算GMV,销售金额一般只指实际成交金额,所以,GMV的数字一般比销售金额大。
客单价,即订单金额与订单数量的比值。
(4)整体指标 销售毛利,是销售收入与成本的差值。
销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用)。
毛利率,是衡量电商企业盈利能力的指标,是销售毛利与销售收入的比值。
如京东的2014年毛利率连续四个季度稳步上升,从第一季度的10.0%上升至第四季度的12.7%,体现出京东盈利能力的提升。
2.网站流量指标 数据指标 (1)流量规模类指标 常用的流量规模类指标包括独立访客数和页面访问数,相应的指标定义在前文(电商总体运营指标)已经描述,在此不在赘述。
(2)流量成本累指标 单位访客获取成本。
该指标指在流量推广中,广告活动产生的投放费用与广告活动带来的独立访客数的比值。
单位访客成本最好与平均每个访客带来的收入以及这些访客带来的转化率进行关联分析。
若单位访客成本上升,但访客转化率和单位访客收入不变或下降,则很可能流量推广出现问题,尤其要关注渠道推广的作弊问题。
(3)流量质量类指标 跳出率(Bounce Rate)也被称为蹦失率,为浏览单页即退出的次数/该页访问次数,跳出率只能衡量该页做为着陆页面(LandingPage)的访问。
如果花钱做推广,着落页的跳出率高,很可能是因为推广渠道选择出现失误,推广渠道目标人群和和被推广网站到目标人群不够匹配,导致大部分访客来了访问一次就离开。
页面访问时长。
页访问时长是指单个页面被访问的时间。
并不是页面访问时长越长越好,要视情况而定。
对于电商网站,页面访问时间要结合转化率来看,如果页面访问时间长,但转化率低,则页面体验出现问题的可能性很大。
人均页面浏览量。
人均页面浏览量是指在统计周期内,平均每个访客所浏览的页面量。
人均页面浏览量反应的是网站的粘性。
(4)会员类指标 注册会员数。
指一定统计周期内的注册会员数量。
活跃会员数。
活跃会员数,指在一定时期内有消费或登录行为的会员总数。
活跃会员率。
即活跃会员占注册会员总数的比重。
会员复购率。
指在统计周期内产生二次及二次以上购买的会员占购买会员的总数。
会员平均购买次数。
指在统计周期内每个会员平均购买的次数,即订单总数/购买用户总数。
会员复购率高的电商网站平均购买次数也高。
会员回购率。
指上一期末活跃会员在下一期时间内有购买行为的会员比率。
会员留存率。
会员在某段时间内开始访问你的网站,经过一段时间后,仍然会继续访问你的网站就被认作是留存,这部分会员占当时新增会员的比例就是新会员留存率,这种留存的计算方法是按照活跃来计算,另外一种计算留存的方法是按消费来计算,即某段的新增消费用户在往后一段时间时间周期(时间周期可以是日、周、月、季度和半年度)还继续消费的会员比率。
留存率一般看新会员留存率,当然也可以看活跃会员留存。
留存率反应的是电商留住会员的能力。
电商数据分析需要统计哪些指标
分析数据需要的指标有:1. 常规数据指标的监测,不在话下。
如用户量,新用户量,UGC量(社交产品),销量,付费量,推广期间的各种数据等等。
2. 渠道分析,或者说流量分析。
对于一个在上升期得APP来说,你们会花资源去引流量、去别的渠道拉用户。
3. 用户的核心转化率。
4. 用户使用时长的监测。
5. 用户流失情况。
6. 活跃用户动态。
7. 用户特征描述。
8. 用户生命周期的监测。
数据分析是什么本词条由“科普中国”百科科学词条编写与应用工作项目 审核 。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
这一过程也是质量管理体系的支持过程。
在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。
数据分析是数学与计算机科学相结合的产物。
电商平台应该分析哪些数据?具体怎么去分析
众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。
做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。
一、时间维度从时间维度上来看,除了显示分析周期的数据,最常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不过周相对用的少。
二、商品类别、价格维度本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。
还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。
自己平台上的上架商品的数量、价格分布情况,作为运营者应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。
比如,某个网站均价5000,那可能可以属于轻奢侈品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。
以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。
当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!注:数据图表来自BDP个人版!
电商运营的基本数据指标有哪些
电商运营的基本数据指标四个指标,如下:第一个指标:商品集中度,表示的销售额或者销售量之中,占比80%(具体数字可以自行约定)的商品数量或者比例。
一般来讲,商品集中度越高越方便下单和追单,也就是补货更加容易,但是同时也暴露优质商品较少,有潜在风险,尤其季节性快消品类目,一旦处于换季边缘,集中度高的商品不给力,整个销售业绩将受到重挫,所以要联系所处品类的行业参考值,合理观察“商品集中度”;第二个指标:商品动销率,商品动销率=动销品种数店铺经营总品种数*100%,动销品种数:店铺里有销售的商品种类总数;第三个指标:库销比,库销比=店铺即时库存或期末库存周期内总销售,其中库存和销售可以是数量亦可以是金额;第四个指标:客户重合度,现在很多电商公司都是实施全网铺货和多品牌的战略(多品牌定位可以使市场覆盖面更广且抵御风险能力更强),为了使新品牌更快更有效的启动和成长,通常的做法是在初期把成熟品牌的网站流量导入到新品牌,加速其生长,这时候一定要计算新品牌和老品牌之间的客户重合度,以便达到一定的阈值可以使新品牌与老品牌解绑,让其独立行走。
过早地撤走流量可能致使新品牌发育迟缓甚至发育不良,过晚撤走流量可能致使多品牌同质化,品牌定位无区隔,不能有效产生增量市场。
当然,追踪成熟品牌与新品牌重合客户的差异和特质只用“重合度”一个指标显然是不够的,我们可以这样来比较两个品牌,假设成熟品牌是A,新品牌是B:(1) 两个品牌的客户重合比例是多少?(2) 在 (1)的基础上,计算重合客户的重复购买率?(3) 在 (1)的基础上,计算重合客户自从在B买过商品之后就再也没有回到A购物过的客户比例?(4) 在 (1)(2)(3)的基础上同时满足,客户的比例是多少?这里必须着重强调一点:数据指标的统计务必保证100%的准确性。
数据的准确性不仅决定了将来做数据分析丶挖掘和数学建模的深度与广度,更体现了数据的权威性,尤其关键指标的统计倘若经常出现差池,会让所有人对数据失去信任,对基于数据得出的结论也随之信心瓦解了。
什么是电商数据分析
电商数据分析,往往可以通过这样几个步骤: 建立完整的数据追踪体系 对获取到的数据报表进行分析,找出其中问题 针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进 一、首先建立数据追踪体系。
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据追踪工具来实现:如Google Analytics, CNZZ等。
需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据: 搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据 搜索引擎营销(竞价)竞价后台数据 社交媒体:社交媒体后台数据 展示类广告投放 广告投放平台数据 等 二、分析 从这些后台中拉出报表,看趋势,按照不同的维度细分,找出问题 三、提出解决方案 根据数据中发现的问题,结合业务需要,给出解决的方法。
重要的是需要评估好工作量和成本,不可以做盲目的改动。
家具电商平台怎么样,有没有效果?
现在团购是一种新兴的发展也是比较快的一种行业,建材这方面很多网站都是线上联合线下活动,主要是以线下现场的团购活动为主,联合众多的装修需求的人一起购买,人多力量大比外面的市场上一般都要便宜些,但是在参加团购的时候自己的眼睛要擦亮,细心比较价格 选择性价比比较高的
各省跨境电商交易额数据在哪里可以查?
电子商务专业是融计算机科学、市场营销学、管理学、法学和现代物流于一体的新型交叉学科。
目的是培养系统掌握电子商务的基础知识和基本技能,熟悉各类电子商务活动的基本业务流程,能熟练运用电子商务技能和现代信息技术从事电子商务活动、电子商务网站及系统建设和安全维护工作、电子商务管理业务的高级应用型技术人才。
基本简介电子商务(Electronic Commerce),简称EC。
通俗的说电子商务,电子商务就是利用互联网开展商务活动,当企业将它的主要业务通过企业的内联网、外联网、及互联网与企业的职员、客户、供销商及其合作伙伴直接相连时,其中发生的活动就是电子商务。
融计算机科学、市场营销学、管理学、法学和现代物流于一体的新型交叉学科。
培养掌握计算机信息技术、市场营销、国际贸易、管理、法律和现代物流的基本理论及基础知识,具有利用网络开展商务活动的能力和利用计算机信息技术、现代物流方法改善企业管理方法,提高企业管理水平能力的创新型复合型电子商务高级专门人才。
折叠专业方向电子商务专业有六个专业方向:网站设计与程序方向、网络营销编辑方向、网络产品规划方向、企业信息化、个人网络创业及银行卡的研发方向。
电子商务专业在不同高校里要求的课程也是不一样的,一些院校注重电子商务网络技术计算机技术,还有一些院校会把课程重点放在商务模式上面,这些主要体现在这个专业所在的院系,有的在管理学院,有的会在信息科学与技术学院,有的会在软件学院,在这样各个院校培养出来的学生的专长也会有一定的区别。
就业方向专业毕业后,可从事银行的后台运作(网络运作)、企事电子商务就业单位网站的网页设计、网站建设和维护、或网络编辑、网站内容的维护和网络营销(含国际贸易)、企业商品和服务的营销策划等专业工作,或从事客户关系管理、电子商务项目管理、电子商务活动的策划与运作、电子商务系统开发与维护工作以及在各级学校从事电子商务教学等工作。
专科学生,还可以在呼叫中心从事电话营销、电子商务助理等文职的工作。
一般的年薪在15W左右还是比较不错的,值得推荐。
家具电商都面临哪些瓶颈?
业内指出,定位不准、缺乏专业团、与传统渠道的冲突、运作成本较高都严重阻碍了家具电商的发展。
“企业对电商定位不清晰”,依诺维绅总裁杨建伟指出这是做电商的通病之一:企业往往有心而无力,没有经验值得借钱,想做电商但不知从何开始,更别谈定位了。
拥有多年电商运作经验的王雷一针见血的指出问题的所在:电商对于家具企业而言,更多的仅仅是获取客户的一个渠道,没有认识到电商其实和传统渠道一样需要系统的开拓和运营,不“昙花一现”都难。
考虑到“电商与传统渠道”之间的矛盾,企业们都不敢大力投入做电商,这在业内早已是公开的秘密。
有人指出,电商意味着同类产品价格要更低,直接冲击的便是传统渠道。
依靠传统渠道起家的企业们,并不愿意为了电商而去触及早已遍布全国的经销商,怕损害他们的利益。
但如果不触及又无法解决产品体验、送货、安装、售后等问题,从而也无法真正开展电商。
在纠结的心态下,多数企业的电商之路也就迟迟无法推进。
电商运营如何做数据分析
展开全部 一. 电商数据分析架构首先需要承认的是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。
二. 线上店铺管理分析对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。
对于店铺运营人员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三. 线下门店管理分析对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。
为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择最合适的店铺以及对店铺实现高效管理。
...
猜你喜欢
- 最近发表
- 推荐