首页 > 房产
家具三角形全等
1.【证明三角形全等的方法有哪些】
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”).4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”) 5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理.注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状.。
2.【什么是全等三角形】
能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等.全等三角形是几何中全等的一种.全等三角形指两个全等的三角形,它们的三条边及三个角都应对等.全等三角形是几何中全等之一.[1] 根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等来形成.正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定.SSS同时否定角角角(AAA)和边边角(SSA)。
3.三角形全等判定定理有哪些
1.SSS 边边边,三条对应边相等的两个三角形是全等三角形 2.SAS 边角边,两条对应对边相等和一个对应角相等的的两个三角形是全等三角形(一定是两条边所夹的角) 3.AAS 角角边,两个对应角相等和一条对应对边相等的两个三角形是全等三角形 4.ASA 角边角,两个对应角相等和一条对应对边相等的两个三角形是全等三角形(与上面的区分,这里是指两个对应角所夹的边.上面的不是) 5.HL 斜边直角边,一条直角边和一条斜边对应相等(只适用于直角三角形)。
4.全等三角形的公式和格式
网友采纳 集体朗读三角形全等判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应相等,那么这两个三角形全等. 展示三角形全等的六种情况: ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) 例1 已知:如图,AB=CB,AD=CD.若P是BD上任意一点求证:(1 )BD是∠ABC的角平分线 . (2)PA=PC ( 闪烁∠1,∠2,学生证明,然后展示) 证明: 在△ABD和△CBD中, AB=CB(已知), AD=CD(已知), BD=BD(公共边), ∴△ABD≌△CBD(SSS), ( 添加条件: 若P是BD上的任意一点, 增加结论:(2)PA=PC. 展示点P在BD上各点位置时情况,由学生证明) ∠1=∠2(全等三角形的对应角相等). 在△ABP和△CBP中, AB=CB(已知), ∠1=∠2(已证), BP=BP(公共边), ∴△ABP≌CBP(SAS)∴PA=PC 把“若P是BD上任意一点”改成:“若P是BD延长线上的任意一点”请学生回答结论有无变化,能否说明理由或加以证明?讨论完成 例2 已知:如图,AD=CE,AE=CD(.闪烁AE,CD) B是AC的中点.探索ΔBDE是什么三角形?并加以证明. 证明:在△ACD和△CAE中, AD=CE(已知), AC=CA(公共边), CD=AE(已知), ∴△ACD≌△CAE(SSS), ∠DAC=∠ECA(全等三角形的对应角相等). 在△ABD和△CBE中, AD=CE(已知), ∠DAB=∠ECB(已证), AB=CB(中点定义), 小结: 本节课我们学习了三角形全等判定定理3以及前两个三角形全等判定定理的综合应用. 在解题过程中,同学们如果一次全等无法证明的话,就应该想法利用两次全等加以证明. 在解题过程中,要注意挖掘隐含条件,如公共边、公共角…等. 练习: 1已知:如图,AB=CD,AD=CB,O是BD的中点,过点O的直线分别交AB,CD于点E,F.求证:OE=OF. 证明:在ΔABD和ΔCDB中, AB =____(____), ____= CB (____), BD =____(____), ∴ΔABD≌ΔCDB(______), ∠1=∠2(___________________). 在ΔBOE和Δ___中, ∠1=∠2 (____), OB = OD (_____________), ∠BOE=_____(__________), ∴ΔBOE≌Δ___(____), OE=OF(______________). 2 已知:如图,A,F,C,D四点在一直线上,AB=DE,BC=EF,AF=CD. 求证:BF=CE 证明:在△ACD和△CAE中,AD=CE(已知),AC=CA(公共边),CD=AE(已知),∴△ACD≌△CAE(SSS),∠DAC=∠ECA(全等三角形的对应角相等).在△ABD和△CBE中,AD=CE(已知),∠DAB=∠ECB(已证),AB=CB(中点定义)三、练习:四、小结:本节课我们学习了三角形全等判定定理3以及前两个三角形全等判定定理的综合应用.在解题过程中,同学们如果一次全等无法证明的话,就应该想法利用两次全等加以证明.在解题过程中,要注意挖掘隐含条件,如公共边、公共角…等.表示是复制的,抱歉,。
- 上一篇:原木色地板原木色家具
- 下一篇:家具选购电脑
- 最近发表
- 推荐